HOW NOT TO OVERWHELM YOUR DEVELOPMENT TEAMS AND
DISAPPOINT THE BUSINESS

A WHITEPAPER BY GARY GRUVER

Why Do Most Software Organizations Consistently Overwhelm Their
Development Teams and Disappoint the Business?

Most software organizations have some common problems: the business is frustrated
that development can’t deliver what they need and expect; the development teams are
overwhelmed with too much work leading to excess work-in-process (WIP) and
burnout; everyone in the organization is frustrated and discouraged, while the problem
keeps getting worse, and technical debt continues to pile up.

Why is this problem so prevalent in software organizations? Is it because it is hard to
estimate? Because every time you create something new with software you are doing
something for the business you have never done before? Because development teams
are trying so hard to meet the needs of the business that they overcommit? Because the
planning team wants to meet the business objectives so much so that they push the
development teams to overcommit as well? Because the business assumes when they
put out a request for a date and they don’t get any pushback they falsely presume it’s a
commitment? Or, is it all of these reasons and more? The exact reasons will vary by
organization, but this problem is significantly more prevalent in software than in other
development teams.

The question, then, is how do we address these issues? We want the business to know
what to expect. We want developers to feel good about their contributions. We want the
organization to have some capacity to sharpen the saw by reducing technical debt.

While I don’t think I have all the right answers, I recently got some helpful insights
from a great project management office (PMO) leader. He leads the PMO for an
organization that employs hundreds of engineers. He has grown his PMO reach from a
smaller, more localized part of their business, into planning for several different parts
of the business that are spread all around the world.

One of the most interesting things this leader said to me was that, “the most important
parts of my job are understanding the capacity of the organization to deliver, ensuring
there is room for sharpening the saw, and setting the expectations of the business.” He
felt accountable, not just for creating the plan, but for ensuring that the organization

=

HOW NOT TO OVERWHELM YOUR DEVELOPMENT TEAMS AND
DISAPPOINT THE BUSINESS

A WHITEPAPER BY GARY GRUVER

delivered what the business expected. It is a straightforward, common-sense approach
for the job that is very different from what I’ve seen in many organizations.

In many organizations, I see a PMO working hard to create plans that can meet the
needs of the business, getting the business to prioritize what they need, when they
need it. Then, they work with the development teams to create a plan of record that will
meet as many of the business’s needs as possible. But many times, this results in the
development teams overcommitting, because everyone wants to meet the needs of the
business. It also starts the first phase of disappointment for the business, because they
are being told they can’t have everything they want when they want it. During
development, when the teams realize they are overcommitted and are not meeting
expectations, the business goes through their second phase of disappointment, and is
frustrated yet again they can never get what they need and expect. The PMO blames the
development teams because they are responsible for delivery. The development teams
get discouraged and trades off sharpening the saw work just to deliver as much of the
business commitments as possible. This only builds up more technical debt in the
process, and the whole approach spirals down into frustrations and disappointments.

A Different Approach

The PMO leader I mentioned previously takes a very different approach. He makes it
clear to the business that they shouldn’t have any expectations, not until they can work
through priorities and ensure the organization has the capacity to deliver. With this,
he spends time collecting metrics to get a detailed understanding of the capacity of an
organization. He works with the teams to ensure their plans include sharpening the saw
work, because he understands if they don’t, their capacity to deliver what the business
needs will go down over time, and technical debt continues to pile up. He also helps
teams make realistic commitments, so they can meet their expectations.

The key to making this all work is the metrics. The PMO leader I spoke to uses story
points provided by the development teams. An organization can also use T-shirt sizing
to estimate demand. Although, the further you get away from high-level estimates to
plans developed by teams that will be doing the work, the more accurate the data will
be. The data is collected and summarized like the example below:

N

HOW NOT TO OVERWHELM YOUR DEVELOPMENT TEAMS AND
DISAPPOINT THE BUSINESS

A WHITEPAPER BY GARY GRUVER

Historical Delivery Data Team's Plans Analysis

Team A

Iteration 1 [lteration 2 |lteration 3 |lteration 4 |[lteration 5 [lteration € [Iteration 7 |lteration 11|lteration 12[lteration 13 Historical AVG [Planning AVG [% over commit

20 23 16 18 15 20 22 20 15 21 19.0 18.7

Team B

2%

5 4 3) 6 S 6 6 5 6 4.9 57

Team C

17%

14 16 13 17 15 14 15 22 21 20 16.7 21.0

Team D

26%

32 37 28 30 25 33 37 44 45 42 BN 43.7

Team E

24%

S 14 10 4 15 3 5] 12 8 14 9.0 113

Team F

26%

2 4 2 3 2 4 2 5} 6 4 3.8 5.0

Team G

32%

12 11 9 14 12 15 10 17 16 18 11.9 17.0

Team H

43%

5 7 4 8 6 5 7 10 9 12 6.0 103

The PMO leader I spoke to has been rolling this approach out across the broader
organization for years, and there have been some very interesting observations. First
and foremost, is that teams tend to overcommit and underdeliver. Even when
faced with historical data, they would still argue that, “I know I have only averaged 5 in
the past, but this iteration we are going to do a 12!” This is a hard behavior to change
and it takes time, persistence, and ongoing feedback. The leader would then go back to
the team that committed to a 12, but only delivered a 4, and provide feedback for
working on the next planning cycle. The team would sheepishly admit they didn’t make
it but felt, sure, they could do 10 the next iteration. This takes time, but as you can see
in the graph above with teams, A and B, they eventually get better at matching capacity
with plans. These teams are also who the leader worked with the longest.

After he had a better understanding of the real capacity of the organization, the next
thing this leader did is he started setting more realistic expectations with the business.
“I know the team is telling you what they are going to do, but this is what you should
expect based on historical performance.” He was very transparent with the business
about the capacity of the organization and what they should expect. He also set
boundaries for the teams: “I know you want to stretch and do more, but I am not going
to let you put in plans that are more than 20% over your historical track record.” They
also needed to adjust their plans to include the work they hadn’t finished in the last
iteration. This work had to include the work that was for continuous improvement in
order to ensure they were improving capacity over time. He tracked sharpening the saw
commitments to completion in the same way as the business commitments, because
they are usually the first things traded off in a crunch.

This leader also spends a lot of time working with both the teams and the business to
set realistic expectations. For instance, he’ll look for opportunities to get better at
capacity estimations. When he sees Team E has historical data ranging from 15 to 3, he

lw

72%

HOW NOT TO OVERWHELM YOUR DEVELOPMENT TEAMS AND
DISAPPOINT THE BUSINESS

A WHITEPAPER BY GARY GRUVER

might suggest that breaking the stories down into smaller, more consistent sizes might
help reduce some of the variability. Essentially, his method is all about providing
visibility and analysis, then gently prodding the organization to get better over time.

There are also certain things the leader doesn’t do that are equally important. He does
not use the capacity numbers to measure productivity, because he knows as soon as he
does, they will start gaming the metric to show productivity gains, and it will lose its
value as a measure of capacity. Instead, if he wants to understand whether or not the
teams are improving, he looks at the stories they are using to sharpen the saw, then he
works to show the business the waste that they are removing will lead to greater
productivity. He also doesn’t use the capacity numbers to compare teams to each other,
since teams usually have their own way of planning and estimating that works for them.
The capacity numbers are not a measure of productivity that we can use to drive
competition between teams, because they may start gaming the metric. And even if we
could get planning metrics that are consistent across teams, the effort probably
wouldn’t be worth the benefit.

The PMO leader doesn’t believe this approach is perfect so he is always modifying and
improving it over time. It doesn’t answer all of the reasons why software organizations
continually overwhelm their development teams and disappoint their businesses. It
does, however, provide some insights on some of the reasons for why organizations
overcommit and how organizations can improve.

Typical Approaches

This PMO Leader’s approach is very different from what I see in most organizations, in
that he takes a very active role in setting realistic expectations with the business and
ensuring the teams don’t overcommit. This takes a lot of effort, and still, the teams
have a natural tendency to overcommit. Now, imagine an organization where nobody is
playing that role. Or, even an organization where the PMO sees their role as pushing
the development teams to commit to as many business requests as possible. Or, where
the business feels their role is to demand what they want, with no visibility into
capacity constraints, and what the teams need to be doing to improve productivity.

I~

HOW NOT TO OVERWHELM YOUR DEVELOPMENT TEAMS AND
DISAPPOINT THE BUSINESS

A WHITEPAPER BY GARY GRUVER

This approach sets up the development teams to be consistently overwhelmed. They
have so much WIP, they just rush from one emergency to another, and never feel as if
they accomplish anything. Can you see how they would get frustrated and disengage?
Can you also see why the business would be disappointed and feel like they don’t have a
very good technology partner? Can you see how this leads to spiraling frustrations that
build up technical debt? I can see this, and I do see it in so many organizations.
Hopefully, this leader’s example can help people address these issues.

The Harder I Push the Less I Get??

But this approach is so different and counter-intuitive for most organizations that it is
worth exploring in more detail. Most leaders feel like the way they deliver more is to get
the organization to make stretch commitments and hold them accountable for
delivery. This way, everyone is working hard and delivering the most value. But this
overlooks the fact that the most inefficient way to run anything is by being
booked to full capacity. Manufacturing learned a long time ago that when you try to
keep a factory running at full capacity, you just end up building a lot of WIP. This excess
WIP results in wasting lots of energy expediting, task switching, and managing the
inventory to get anything done. This is well-supported' by queuing research, and the
same principles also apply to software. If we try to make plans that ensure everyone is
busy all of the time, as soon as there is any unknown that causes a change to the plan,
we have to switch tasks and expedite work in order to complete anything.

How then, as a leader, do I make sure my organization is productive and getting
as much done as possible? Just like with manufacturing, Goldratt teaches us it starts
with understanding and optimizing the bottleneck. We need to understand where the
bottleneck is, and make sure it is never starved for work, because this will define the
overall rate of the system. Then, we need to make sure we are doing everything we can
to optimize the throughput of the bottleneck.

The bottleneck could be in the requirements, development, or release processes.
Usually, it is in the development or release process. If it is in the release process, there

! "The principles of Product Development Flow Second Generation Lean Product Development” By Donald G. Reinertsen,
Celeritas Publishing, Redondo Beach, California, 2009, Chapter 3

[65]

HOW NOT TO OVERWHELM YOUR DEVELOPMENT TEAMS AND
DISAPPOINT THE BUSINESS

A WHITEPAPER BY GARY GRUVER

is lots of automation that can and should be leveraged from the DevOps community. If
this is your bottleneck, you should work to address these issues and move the
bottleneck to the developers. You might think you never want your developers to be a
bottleneck for the business. That might be a good idea, but not very practical since it is
so much easier to come up with ideas you can do with software than it is to deliver
them. Therefore, we want the bottleneck to be with the developers, since they are the
ones developing new value for the business. Then, we want to do everything we can to
optimize the throughput of the developers.

As a leader, you might think, yes, this is what I am doing by getting the organization to
make stretch commitments and challenging them to deliver, — working to optimize the
throughput of the developers, which are the bottleneck. Although this overlooks all of
the well-documented, queuing research that shows that booking to full-capacity is the
most inefficient way to run any process. Because as soon as something doesn’t happen
according to plan, you have to start expediting and moving everything around to get the
most important stuff done. Any coordination across teams must get renegotiated, or
developers get blocked. Everyone is so busy rushing to tend to the latest emergency
that nobody is very productive, and the improvement efforts may get ignored.

But Then How To Optimize the Value the Organization is Delivering?

We need to start with realistic plans that are based on historical performances, like the
PMO leader in this example. We need a plan that organization can deliver, even when
everyday uncertainties arise. The expectations for the business should be based on this
realistic plan, and until their request is part of this plan, they shouldn’t have any
expectations. It is not that we don’t always want the developers working at full
capacity, it is just that we don’t want them planned at an overcapacity that requires
replanning and adjustments when any new discoveries show up. Next, as Goldratt
teaches us, we want to make sure there is a buffer of work waiting for developers to
start working on, especially if uncertainty results in them finishing early. This should
be a prioritized list that includes business requirements and technical debt that is
defined and ready, so they are never left waiting.

Next, we want to do everything we can to optimize the bottleneck. When I led the
large-scale transformation at HP, we did everything we could to help the developers be

(o)}

HOW NOT TO OVERWHELM YOUR DEVELOPMENT TEAMS AND
DISAPPOINT THE BUSINESS

A WHITEPAPER BY GARY GRUVER

more productive. We bought the developers large and multiple monitors because we
knew they would be more effective if they could see more of the code all at once. We
also bought everyone noise-cancellation headsets, because we knew that while software
development requires collaboration, it also requires periods of intense concentration,
which is hard to do in today's noisy work environments. We looked at the repetitive
tasks the developers were doing and tried to automate as much as possible. We did
everything we could think of to help the developers become more productive, because
we understood that was our bottleneck to delivering value to the business.

If you want to understand if the organization is optimizing the delivery of value, look at
sharpening the saw work, and quantify the waste that is being removed so the business
sees and appreciates everything being accomplished to be more efficient. This makes
the business feel better about their partners. Then, you’ll want to work to make the
processes across teams more visible so it’s easier to identify if there is broader waste in
the organization that is slowing things down, that was previously beyond the purview
of the individual teams. This type of focus — trying to understand and optimize the
bottleneck — is what truly optimizes the flow of value.

Summary

There are many possibilities to why software organizations consistently overwhelm
their development teams and disappoint their businesses. Based on this example, it
would appear that everyone is so motivated to meet the needs of the business that
there is a tendency to be overly optimistic. If organizations are going to create realistic
plans and credible expectations with the business, they are going to have to bound their
commitments with metrics that represent historical performance. This will help them
avoid the waste associated with having to rework plans and expedite deliveries. Once
they have these realistic plans, they can ensure they are optimizing delivery by having a
buffer in front of the bottleneck, and then work together to optimize the flow through
the bottleneck.

Gary Gruver is the CEO of Gruver Consulting, an
acclaimed author, and in-demand speaker. Gary brings a
proven track record of transferming software
development and delivery processes in large
organizations.

Faor more information, visit GaryGruver.com

